Particle swarm optimisation of memory usage in embedded systems
نویسندگان
چکیده
In this paper, we propose a dynamic, non-dominated sorting, multiobjective particle-swarm-based optimizer, named Hierarchical Non-dominated Sorting Particle Swarm Optimizer (H-NSPSO), for memory usage optimization in embedded systems. It significantly reduces the computational complexity of others MultiObjective Particle Swarm Optimization (MOPSO) algorithms. Concretely, it first uses a fast non-dominated sorting approach with O(mN) computational complexity. Second, it maintains an external archive to store a fixed number of non-dominated particles, which is used to drive the particle population towards the best non-dominated set over many iteration steps. Finally, the proposed algorithm separates particles into multi sub-swarms, building several tree networks as the neighborhood topology. HNSPSO has been made adaptive in nature by allowing its vital parameters (inertia weight and learning factors) to change within iterations. The method is evaluated using two real world examples in embedded applications and compared with existing
منابع مشابه
A New Solution for the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem based on the Particle Swarm Meta-heuristic
In this paper, we develop a new mathematical model for a cyclic multiple-part type threemachine robotic cell problem. In this robotic cell a robot is used for material handling. The objective is finding a part sequence to minimize the cycle time (i.e.; maximize the throughput) with assumption of known robot movement. The developed model is based on Petri nets and provides a new method to calcul...
متن کاملS3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization
Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...
متن کاملLinearization of M-LINC Systems Using GMP and Particle Swarm Optimization for Wireless Communications
In this paper, an efficient algorithm for the efficiency maximization of the multilevel linear amplification using nonlinear components (M-LINC) systems is proposed regarding the linearity of the system. In this algorithm, we use the generalized memory polynomial (GMP) to provide a behavioral model for the power amplifier (PA) and calculate the power spectral density (PSD) of the output signal ...
متن کاملA Hybrid Constrained Genetic Algorithm / Particle Swarm Optimisation Load Flow Algorithm
This paper develops a hybrid Constrained Genetic Algorithm and Particle Swarm Optimisation method for the evaluation of the load flow in heavy-loaded power systems. The new algorithm is demonstrated by its applications to find the maximum loading points of three IEEE test systems. The paper also reports the experimental determination of the best values of the parameters for use in the Particle ...
متن کاملReduction of Energy Consumption in Embedded Systems: A Hybrid Evolutionary Algorithm
In this paper, we propose a new hybrid evolutionary algorithm based on Particle Swarm Optimization (PSO) and on Simulated Annealing (SA) for reducing memory energy consumption in embedded systems. Our hybrid algorithm outperforms the Tabu Search (TS) approach. In fact, nearly from 76% up to 98% less energy consumption is recorded.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJHPSA
دوره 1 شماره
صفحات -
تاریخ انتشار 2008